Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma.

نویسندگان

  • Shruti V Kabadi
  • Bogdan A Stoica
  • Kimberly R Byrnes
  • Marie Hanscom
  • David J Loane
  • Alan I Faden
چکیده

Traumatic brain injury (TBI) induces secondary injury mechanisms, including cell-cycle activation (CCA), which lead to neuronal cell death, microglial activation, and neurologic dysfunction. Here, we show progressive neurodegeneration associated with microglial activation after TBI induced by controlled cortical impact (CCI), and also show that delayed treatment with the selective cyclin-dependent kinase inhibitor roscovitine attenuates posttraumatic neurodegeneration and neuroinflammation. CCI resulted in increased cyclin A and D1 expressions and fodrin cleavage in the injured cortex at 6 hours after injury and significant neurodegeneration by 24 hours after injury. Progressive neuronal loss occurred in the injured hippocampus through 21 days after injury and correlated with a decline in cognitive function. Microglial activation associated with a reactive microglial phenotype peaked at 7 days after injury with sustained increases at 21 days. Central administration of roscovitine at 3 hours after CCI reduced subsequent cyclin A and D1 expressions and fodrin cleavage, improved functional recovery, decreased lesion volume, and attenuated hippocampal and cortical neuronal cell loss and cortical microglial activation. Furthermore, delayed systemic administration of roscovitine improved motor recovery and attenuated microglial activation after CCI. These findings suggest that CCA contributes to progressive neurodegeneration and related neurologic dysfunction after TBI, likely in part related to its induction of microglial activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CR8, a novel inhibitor of CDK, limits microglial activation, astrocytosis, neuronal loss, and neurologic dysfunction after experimental traumatic brain injury.

Central nervous system injury causes a marked increase in the expression of cell cycle-related proteins. In this study, we show that cell cycle activation (CCA) is detected in mature neurons at 24 hours after rat lateral fluid percussion (LFP)-induced traumatic brain injury (TBI), as reflected by increased expression of cyclin G1, phosphorylated retinoblastoma (phospho-Rb), E2F1 and proliferati...

متن کامل

Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation.

Recent clinical studies indicate that traumatic brain injury (TBI) produces chronic and progressive neurodegenerative changes leading to late neurologic dysfunction, but little is known about the mechanisms underlying such changes. Microglial-mediated neuroinflammationis an important secondary injury mechanism after TBI. In human studies, microglial activation has been found to persist for many...

متن کامل

P153: Evaluating the Effect of Lactobacillus Acidophilus Probiotic Supplementation on Sensory-Motor Recovery After a Traumatic Brain Injury

Traumatic brain injury (TBI) is a common cause of death which affects millions of people around the world. TBI is also associated with various neurological impairments. After the primary mechanical injury at the moment of a TBI event, several cellular and molecular processes are activated within the brain tissue as the secondary injury. An important mechanism involved in the secondary injury of...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity.

Acute and chronic neurodegeneration, for example, following brain injury or Alzheimer's disease, is characterized by programmed death of neuronal cells. The present study addresses the role and interaction of p53- and NF-kappaB-dependent mechanisms in delayed neurodegeneration following traumatic brain injury (TBI). After experimental TBI in mice p53 rapidly accumulated in the injured brain tis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2012